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A recently proposed expansion of the notion of S-duality [1] provides a new tool for

exploring the set of N = 2 SCFTs by identifying them as factors in the infinite-coupling

limits of Lagrangian field theories. The requirements of matching simple features of the low

energy effective actions, global symmetry groups, and current algebra central charges, turn

out to tightly constrain the possible properties of the SCFTs. In this paper we use this

approach to map out rank 1 SCFTs (those with 1 complex-dimensional Coulomb branches)

and find three new such theories.

The singular Seiberg-Witten curves describing the low energy effective actions on the

Coulomb branches of rank 1 N = 2 SCFTs were found in [2, 3] and correspond to Ko-

daira’s classification [4] of degenerations of one-dimensional families of elliptic curves. This

gives a list of singularities associated to Lagrangian conformal theories, together with

six strongly-coupled isolated fixed point singularities, three of which are characterized by

having Coulomb branch vevs of dimensions 3, 4, and 6. Mass deformations of these sin-

gularities consistent with flavor symmetries E6, E7, and E8 were constructed by Minahan

and Nemeschansky [3], and their existence was deduced from string constructions [5].

We will argue on the basis of the proposed infinite coupling duality that there are other,

inequivalent, mass deformations of these same singular curves, with correspondingly differ-

ent flavor groups. In weakly-coupled examples, where we have a Lagrangian description,

such inequivalent mass deformations are familiar: they correspond to different choices of

gauge representations for the matter fields such that the gauge coupling remains marginal.

Our interacting fixed-point examples with the same singularity but different mass defor-

mations can, heuristically, be thought of in the same way: they are strongly coupled rank

1 gauge theories all with the same “gauge group” (corresponding to the singularity) but

with different “matter content” (corresponding to the different mass deformations).

Because we have different deformations of the same Coulomb branch singularity, it is

convenient to name the singularity by the dimensions of its Coulomb branch vevs instead

of by its global symmetry algebra, which is a property of a particular deformation of the

singularity. Thus SCFT[di] will denote a rank-n superconformal fixed point singularity with

vevs of dimensions d1, . . . , dn, and a particular deformation of this singularity with flavor

symmetry algebra h (corresponding to a particular SCFT) will be denoted by SCFT[di :

h]. We denote a Lagrangian gauge theory with gauge algebra g and half-hypermultiplet

representation content r by g w/ r, from which the Coulomb branch vev dimensions and

the flavor algebra can be determined.1 In this notation, the duality proposed in [1] has the

general form

g[di] w/ r = g̃[d̃i] w/ (r̃⊕ SCFT[d : h]), (1)

where we have indicated the dimensions of the Coulomb branch vevs of the Lagrangian

1The rules: The Coulomb branch vevs are the orders of the independent adjoint Casimirs of g, which

are the exponents of g plus 1. The flavor symmetry depends on whether the half-hypermultiplets are in

complex, real (orthogonal), or pseudoreal (symplectic) representations. A complex representation always

appears with its complex conjugate, and n · (r ⊕ r) contributes a U(n) flavor symmetry factor. Only even

numbers of half-hypermultiplets in real representations can be coupled, and 2n · r contributes an Sp(n)

flavor symmetry factor. Any number of pseudoreal half-hypermultiplets can be coupled, and n · r gives an

SO(n) flavor symmetry factor.
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d h kh
3
2 · kR 48 · a Z2 obstruction?

6 E8 12 124 190 no

6 Sp(5) 7 98 164 yes

4 E7 8 76 118 no

4 Sp(3) ⊕ SU(2) 5 ⊕ 8 58 100 yes ⊕ no

3 E6 6 52 82 no

3 2 ≤ rank(h) ≤ 6 ≤ 8 34–38 64–68 ?

Table 1: Properties of predicted rank 1 SCFTs. d is the dimension of the Coulomb branch vev,

h is the flavor symmetry algebra, kh is the flavor current algebra central charge, kR is the U(1)R

current algebra central charge, and a is one of the conformal anomalies. Only ranges of possible

values are given for the entry in the last row.

gauge groups as well, for clarity.

Our main results are the existence and properties of the rank one isolated SCFTs

shown in table 1. The curves of the E6,7,8 theories were found in [3]. The central charges of

the E6 and E7 theories were found by consistency of the infinite-coupling duality proposal

in [1]. In the rest of this note we use similar consistency arguments to compute the other

entries in table 1. These properties agree with those of the E6,7,8 theories computed using

AdS/CFT techniques in [6].

The evidence for the new SCFTs comes from finding many different examples of du-

alities of the form (1) with SCFT factors with the properties shown in table 1. As we

describe in more detail below, we search through a list of Lagrangian conformal theories

with the assumption that they have infinite coupling duals of the form (1), and compute the

properties of the assumed isolated SCFT by matching various symmetries and anomalies

on the two sides of the duality. Whenever we find two or more examples giving matching

SCFTs, we include it in table 1. In fact, the resulting set of dualities gives many examples

for each of the theories, consistent in an intricate and beautiful way, and are listed in tables

2 and 3 below. The exception is the SCFT in the last line of table 1 for which there is only

one duality which does not give enough constraints to pin down its properties precisely. In

an appendix we include some notes on computing Lie algebra embeddings, and record the

embeddings used in tables 2 and 3, for the convenience of readers interested in checking

our results.

Constraints on possible infinite coupling duals of the form (1) come from matching on

both sides of the equivalence the following seven quantities:

1. The rank of the gauge group and the spectrum of dimensions of the Coulomb branch

vevs, implying

{di} = {d̃i} ∪ {d}. (2)

2. The flavor symmetry algebras, implying the flavor symmetry on the left is the sum,

f̃ ⊕ f, of the flavor symmetry f̃ of the r̃ half-hypermultiplets on the right and the

commutant of g̃ in h,

g̃ ⊕ f ⊂ h with f maximal. (3)
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3. The contribution to the beta function from weakly gauging the flavor symmetry on

both sides, giving

T (r) = T (r̃) + kh · If֒→h, (4)

where T (r) is the quadratic index of the representation r, If֒→h is the Dynkin index

of embedding, and kh is the central charge of the h flavor symmetry current algebra.

4. The number of marginal couplings, implying the vanishing of the beta function of

the g̃ gauge factor,

2 · T (g̃) = T (r̃) + kh · Ieg→֒h, (5)

where T (g̃) denotes the quadratic index of the adjoint representation of g̃.

5. The contribution to the U(1)R symmetry central charge on both sides, giving this

central charge of the SCFT, kR, as

(3/2) · kR = 24 · c = 4 · (|g| − |g̃|) + (|r| − |̃r|), (6)

which is related as shown to the energy-momentum central charge c. |g| and |r| are

the dimensions of the algebra and representation, respectively.

6. The contribution to the a conformal anomaly, giving a for the SCFT as

48 · a = 10 · (|g| − |g̃|) + (|r| − |̃r|). (7)

In general |g| =
∑

i(2di − 1), implying from (2) that |g| − |g̃| = 2d − 1. So the

difference between (6) and (7) is already fixed by condition i.

7. Whether there is a global Z2 obstruction [7] to gauging of the flavor symmetry.

The first five conditions were described in [1], while the a and c conformal anomalies can be

computed from ’t Hooft anomaly matching, as reviewed in [6]. The global Z2 obstruction

matching is described below. Our conventions for the normalization of the central charges

and for the quadratic index follow those of [1].

Let us illustrate the use of these constraints in determining the dual SCFT in the case

of the the Lagrangian G2 w/ 8 ·7 conformal theory, given as entry 4 in table 2. We assume

it has an infinite-coupling dual of the form (1). Apply the above list of conditions:

1. Since G2 is rank 2, with adjoint Casimirs of order 2 and 6, the only possibility is that

SCFT[h] and g̃ are both rank 1 gauge theories. Thus we must have g̃ = SU(2), and

since its Coulomb branch vev has dimension 2, the dimension 6 vev must belong to

the rank 1 SCFT[6 : h].2 Thus

G2 w/ 8 · 7 = SU(2) w/ (n · 2⊕ SCFT[6 : h]) (8)

2In this particular case, though not in most of the other cases we consider, there is strong additional

evidence for these conclusions: the form of the curve describing the low energy effective action of the

G2 theory is known [8], from which it is easily checked that it factorizes into the scale invariant SU(2)

singularity [9] and the SCFT[6] singularity in the infinite coupling limit.
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with SU(2) ⊂ h. Only n ≤ 7 half-hypermultiplet 2’s can occur since any more or any

other representations would contribute too much to the SU(2) beta function, making

it infrared free.

2. The left side of (8) has Sp(4) flavor symmetry since the 7 is a real representation.

Since the 2 of SU(2) is pseudoreal, the half-hypermultiplets on the right side con-

tribute an SO(n) flavor symmetry factor. Thus the only way to match the global

symmetries on both sides is for n = 0 or 1 (so that the half-hypermultiplets don’t

contribute any flavor factors), and SU(2)⊕Sp(4) ⊂ h with Sp(4) being the commutant

of SU(2) in h. Assuming that h is simple and has rank less than or equal to 8, some

work with a table of maximal subalgebras [10] shows that only SO(16) and Sp(5)

have SU(2) subalgebras with commutant Sp(4). In either case the Sp(4) factor has

Dynkin index of embedding ISp(4)→֒SO(16) = ISp(4)→֒Sp(5) = 1, but ISU(2)→֒SO(16) = 4,

while ISU(2)→֒Sp(5) = 1.

3. For the Sp(4) flavor symmetry 7 = 7·T (8) = khISp(4)→֒h. (The n ·2’s don’t contribute

because they are singlets under the Sp(4).) Since the index of embedding is 1, we

find that kh = 7 whether h = SO(16) or Sp(5).

4. 8 = T (SU(2)) = n + 7 · ISU(2)→֒h. Since n ∈ {0, 1} and the index of embedding is a

positive integer, the only solution is n = 1 and ISU(2)→֒h = 1. Thus we must have

h = Sp(5).

5. (3/2) · kR = 4 · (14 − 3) + (7 · 8 − 1 · 2) = 98.

6. 48 · a = 10 · (14 − 3) + (7 · 8 − 1 · 2) = 164.

7. The Sp(4) flavor symmetry of G2 w/ 8 ·7 has a global Z2 obstruction to being gauged

since there is an odd number (7) of the pseudoreal 8’s of Sp(4). So, to weakly gauge

the Sp(4), a spectator half-hypermultiplet (or just a Weyl fermion) in a pseudoreal

representation must be added. Since the spectator fields are otherwise uncoupled, this

Z2 obstruction must persist whatever the value of the G2 coupling, and so should

also be seen in the dual SU(2) w/ (2 ⊕ SCFT[6 : Sp(5)]) theory. Since the SCFT

factor contributes the fields transforming under Sp(4), and since ISp(4)→֒Sp(5) = 1 is

odd, it follows that the SCFT
[6]
Sp(5) theory by itself must have a global Z2 obstruction

in its Sp(5) flavor algebra.3 This is necessary also for the SU(2) gauge factor to be

anomaly-free: the single 2 half-hypermultiplet contributes a Z2 anomaly, but so does

the SCFT factor since SU(2) is of odd index in Sp(5).

We assumed in the above argument that rank(h) ≤ 8 and h was simple. The first as-

sumption is justified because the maximum number of independent mass deformations of

SCFT[6] is 8—as seen by counting the independent deformations of the complex structure

of its curve—so whatever its flavor algebra it must have rank at most 8. The simplicity of

h assumption has no justification, and without it there are many more possible answers.

3Thanks to N. Seiberg for discussions on this point.
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g w/ r = g̃ w/ r̃ ⊕ SCFT[d : h]

1. Sp(3) 14 ⊕ 11 · 6 = Sp(2) [6 : E8]

2. SU(6) 20 ⊕ 15 ⊕ 15 ⊕ 5 · 6 ⊕ 5 · 6 = SU(5) 5 ⊕ 5⊕ 10 ⊕ 10 [6 : E8]

3. SO(12) 3 · 32 ⊕ 32
′ ⊕ 4 · 12 = SO(11) 3 · 32 [6 : E8]

4. G2 8 · 7 = SU(2) 2 [6 : Sp(5)]

5. SO(7) 4 · 8 ⊕ 6 · 7 = Sp(2) 5 · 4 [6 : Sp(5)]

6. SU(6) 21 ⊕ 21 ⊕ 20 ⊕ 6 ⊕ 6 = SU(5) 10 ⊕ 10 [6 : Sp(5)]

7. Sp(2) 12 · 4 = SU(2) [4 : E7]

8. SU(4) 2 · 6 ⊕ 6 · 4⊕ 6 · 4 = SU(3) 2 · 3 ⊕ 2 · 3 [4 : E7]

9. SO(7) 6 · 8 ⊕ 4 · 7 = G2 4 · 7 [4 : E7]

10. SO(8) 6 · 8 ⊕ 4 · 8′ ⊕ 2 · 8′′ = SO(7) 6 · 8 [4 : E7]

11. SO(8) 6 · 8 ⊕ 6 · 8′ = G2 [4 : E7] ⊕ [4 : E7]

12. Sp(2) 6 · 5 = SU(2) [4 : Sp(3) ⊕ SU(2)]

13. Sp(2) 4 · 4 ⊕ 4 · 5 = SU(2) 3 · 2 [4 : Sp(3) ⊕ SU(2)]

14. SU(4) 10 ⊕ 10 ⊕ 2 · 4⊕ 2 · 4 = SU(3) 3 ⊕ 3 [4 : Sp(3) ⊕ SU(2)]

15. SU(3) 6 · 3 ⊕ 6 · 3 = SU(2) 2 · 2 [3 : E6]

16. SU(4) 4 · 6 ⊕ 4 · 4⊕ 4 · 4 = Sp(2) 6 · 4 [3 : E6]

17. SU(3) 3 ⊕ 3 ⊕ 6⊕ 6 = SU(2) n · 2 [3 : h]

Table 2: Predicted dualities with one marginal operator.

For example, we could have h = SU(2) ⊕ Sp(4). In these non-simple cases, each simple

factor can have a different central charge, making it easy to satisfy the requirements to be

a dual description.

Even though each individual assumed duality may be consistent with more than one

possible isolated rank 1 SCFT, we can gain stronger evidence for the existence of a par-

ticular one by showing that it consistently occurs in the duals of other theories. We can

check for this by examining higher-rank Lagrangian conformal theories which could have

infinite coupling duals with SCFT[d] factors with d = 3, 4, or 6. The possible Lagrangian

theories are constrained by requirement (2) above. For example, for the infinite-coupling

dual to contain a SCFT[6] factor, the gauge algebra g of the Lagrangian theory must in-

clude an order 6 adjoint Casimir, and its list of remaining Casimir orders must be those of

the dual gauge algebra g̃. There are only a handful of possibilities for such g among simple

algebras, namely SU(3), Sp(2), G2, SU(4), SO(7), Sp(3), SO(8), SU(6), and SO(12). From

the known curves for the rank 2 theories, only 6 have infinite-coupling limits [1], and there

are 53 (non-N=4) Lagrangian conformal theories with gauge algebras, g, with rank ≥ 3 in

this list. By searching through this list for pairs of theories consistent with duals involving

the same SCFTs, we find the 16 ones shown in table 2, all consistent with the properties

recorded in table 1. Some details of the flavor symmetry embeddings for each entry in

table 2 are collected in the appendix.

That not all of the 53 rank ≥ 3 Lagrangian theories appear in table 2 is reasonable,

since they need not all necessarily have rank 1 SCFT factors: they could be self-dual,
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or could be dual to theories with rank ≥2 SCFT factors. For example, from the known

curves for the Lagrangian superconformal theories with rank r classical gauge groups with

hypermultiplets in fundamental representations [11], it follows from their degeneration in

the infinite coupling limit that their duals are SU(2) plus rank r − 1 isolated SCFTs.

Entry 17 of table 2 is the only case where we do not have enough information to

determine the properties of the dual SCFT precisely. Because the flavor symmetry is

U(1) ⊕ U(1), we can only have n ∈ {0, 1, 2}, and must have SU(2)I ⊕ U(1) ⊂ h, with U(1)

maximal and I the index of embedding of the SU(2). Then kh = (8−n)/I, (3/2)·kR = 38−

2n, and 48 · a = 68− 2n. There are many possibilities for h consistent with the embedding

constraint. Nevertheless, since kR and a are smaller than those of the SCFT[3 : E6] theory,

and since it is known from its curve [12] that the SU(3) w/ 3 ⊕ 3 ⊕ 6 ⊕ 6 theory has an

infinite coupling limit, it follows that there must be a new SCFT[3].

There is another, less direct, way of constraining h for entry 17. We can reverse

the direction of our logic, and, starting with SCFT[3 : h] we can gauge different SU(2)

subalgebras of h and try to add appropriate numbers of doublet half-hypermultiplets to

make the gauge coupling marginal. By construction there will be one such embedding giving

the Lagrangian conformal theory of entry 17. But if there are other embeddings, then we

would predict the existence of a rank 2 conformal theory with Coulomb branch dimensions

2 and 3 and with a marginal coupling, but no purely weakly coupled (Lagrangian) limit.

There is nothing wrong with this in general—indeed, their existence for higher ranks is

a robust prediction of infinite-coupling duality, as we will discuss below. However, at

rank 2 there is some evidence from systematic searches for all possible curves of rank 2

SCFTs [8, 13] that all those curves with marginal operators have a limit in the coupling

space where the curve becomes singular in a way consistent with a purely weakly coupled

Lagrangian description. This is further supported by the fact that for the other 5 rank 1

SCFTs listed in table 1, the only conformal gaugings of SU(2) subalgebras are precisely

those with Lagrangian limits. If we assume then that this should also apply to the SCFT[3 :

h] theory, it then follows from a detailed examination of algebra embeddings that rank(h) =

2, since all higher-rank h turn out to admit multiple inequivalent conformal gaugings of

SU(2) subalgebras. Assuming rank(h) = 2 forces n = 2, so gives kh = 6/I, (3/2) · kR = 34

and 48 · a = 64, but does not constrain h any further since all rank 2 h’s only admit the

single Lagrangian conformal SU(2) embedding.

In general there are many different ways of gauging rank ≥ 2 subalgebras of the flavor

algebras of the SCFTs in table 1. This provides many examples of conformal theories with

marginal couplings which do not appear in the list in table 2 of such theories with purely

Lagrangian descriptions in some limit. Some simple examples are

SU(3) w/ SCFT[3 : E6] E6 ⊃ SU(3)2 ⊕ (G2)1,

SU(3) w/ SCFT[6 : E8] E8 ⊃ SU(3)1 ⊕ (E6)1,

G2 w/ 2 · 7⊕ SCFT[6 : E8] E8 ⊃ (G2)1 ⊕ (F4)1,

F4 w/ 4 · 26 ⊕ SCFT[6 : E8] E8 ⊃ (F4)1 ⊕ (G2)1,

(9)

where we have indicated the embedding of the gauge algebra in the SCFT flavor algebra on

the right, with the index of embedding of each subalgebra shown as a subscript. For these
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g w/ r = g̃ w/ r̃ ⊕ SCFT[d : h]

18. SU(2) ⊕ SU(3) 2·(2,1) ⊕ (2,3⊕3) ⊕ 4·(1,3⊕3) = SU(2) ⊕ SU(2) 2·(2,1) ⊕ 2·(1,2) [3 : E6]

19. SU(2) ⊕ Sp(2) 2·(2,4) ⊕ 8·(1,4) = SU(2) ⊕ SU(2) [4 : E7]

20. SU(2) ⊕ Sp(2) 3·(2,1) ⊕ (2,5) ⊕ 4·(1,5) = SU(2) ⊕ SU(2) 3·(2,1) [4 : Sp(3)⊕ SU(2)]

21. SU(2) ⊕ G2 (2,1) ⊕ (2,7) ⊕ 6·(1,7) = SU(2) ⊕ SU(2) (2,1) ⊕ (1,2) [6 : Sp(5)]

22. SU(3) ⊕ SU(3) 2·(3,3) ⊕ 2·(3,3) = SU(2) ⊕ SU(3) 2·(2,1) [3 : E6]

23. SU(3) ⊕ SU(3) (3⊕3,3⊕3) = SU(2) ⊕ SU(3) 2·(2,1) [3 : E6]

24. SU(3) ⊕ SU(3) 3·(3⊕3,1) ⊕ (3,3) ⊕ (3,3) = SU(2) ⊕ SU(3) 2·(2,1) [3 : E6]

⊕ 3·(1,3⊕3) ⊕ 3·(1,3⊕3)

25. SU(3) ⊕ Sp(2) (3⊕3,1) ⊕ (3⊕3,5) = SU(2) ⊕ Sp(2) 2·(2,1) [3 : E6]

= SU(3) ⊕ SU(2) (3⊕3,1)[4 : Sp(3)⊕ SU(2)]

26. SU(3) ⊕ Sp(2) 2·(3⊕3,1) ⊕ (3⊕3,4) ⊕ 6·(1,4) = SU(2) ⊕ Sp(2) 2·(2,1) ⊕ 6·(1,4) [3 : E6]

= SU(3) ⊕ SU(2) 2·(3⊕3,1) [4 : E7]

27. Sp(2) ⊕ Sp(2) 2·(5,1) ⊕ (5,4) ⊕ 7·(1,4) = SU(2) ⊕ Sp(2) 7·(1,4) [4 : Sp(3)⊕ SU(2)]

= Sp(2) ⊕ SU(2) 2·(5,1) [4 : E7]

28. Sp(2) ⊕ Sp(2) 4·(4,1) ⊕ 2·(4,4) ⊕ 4·(1,4) = SU(2) ⊕ Sp(2) 4·(1,4) [4 : E7]

29. Sp(2) ⊕ G2 5·(4,1) ⊕ (4,7) ⊕ 4·(1,7) = SU(2) ⊕ G2 4·(1,7) [4 : E7]

= Sp(2) ⊕ SU(2) 5·(4,1) ⊕ (1,2) [6 : Sp(5)]

Table 3: Some predicted dualities with two marginal operators.

examples it is clear that they cannot be dual to a purely Lagrangian field theory, since

they all have exceptional flavor algebras. These are thus examples of conformal theories

with marginal couplings but no purely weak-coupling limit.

All our arguments can also be applied to theories with more than one marginal gauge

coupling. We illustrate this on the small set of rank 2 and 3 Lagrangian theories with two

marginal couplings which reduce in the limit as one of the couplings becomes weak to one

of the rank 2 theories (entries 4, 7, 12, 13, 15, or 17) in table 2. In the rank 3 cases, one

factor of the gauge algebra must be SU(2) which is self dual. The dual descriptions in the

infinite-coupling limit of the other factor’s coupling are given in entries 18 to 21 of table 3.

For the rank 4 examples, where each simple gauge algebra factor has rank 2, we give their

dual descriptions in table 3 only in the limit as one or the other gauge factor is taken to

infinite coupling. (If the two infinite coupling limits are different, we give the dual of the

first factor on the first line and that of the second factor on the second line of the entry

in table 3.) The double infinite-coupling limit of all these theories have dual descriptions

of the form SU(2) ⊕ SU(2) w/ r ⊕ SCFT[d1, d2] where SCFT[d1, d2] are isolated rank 2

SCFTs. The success of the infinite coupling dual descriptions of all these theories is strong

additional evidence for the existence of the first five SCFTs in table 1.

The existence of the new rank 1 SCFTs with flavor symmetries other than En raises

some obvious questions: What are the Seiberg-Witten curves and one-forms describing the

low energy effective actions of (the mass deformations of) these theories? Are there string

constructions that realize these sub-maximal SCFTs?

The set of dual descriptions found in tables 2 and 3, together with the known Seiberg-

Witten singular curves for the rank 1 SCFTs and some Lagrangian conformal theories that
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appear on the right side of the duality can be used in many cases to determine the singular

curves for the higher-rank Lagrangian theories on the left.

The techniques of this paper can also be applied to determining the properties of higher-

rank isolated SCFTs. Here, though, the story will certainly be much more complicated:

there are many known rank 2 singularities [8, 13], a complete list has not been found, and

techniques for determining their mass deformations consistent with the requirements of

N = 2 supersymmetry have not been developed.
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A. Lie algebra embeddings

The embeddings g̃ ⊂ h for each of the dual theories listed in tables 2 and 3 are listed below

in table 4, where the Dynkin index of embedding of each subalgebra is shown as a subscript.

We make a few comments on how these embeddings can be extracted from tables. Tables

of maximal semisimple subalgebras of simple Lie algebras are given in [10]. We need not

only the semisimple factors, but also any U(1) factors that may occur. Maximal reductive

subalgebras of simple Lie algebras which have an abelian factor only have a single U(1), and

their semisimple factors correspond to the Dynkin diagram which results from eliminating

any two nodes with mark 1 from the extended Dynkin diagram of the original algebra [14].

All embeddings can be found by following chains of maximal embeddings. One is then

faced with finding maximal embeddings in semi-simple algebras. The only non-trivial case

then are diagonal embeddings in two or more identical factors. For example, h ⊃ gJ ⊕gK ⊃

gJ+K⊕U(1)⊕· · ·⊕U(1) where there are rank(g) U(1) factors; the subscripts are to indicate

that the Dynkin indices of embedding add under diagonal embedding.

The problem we face is not just to find an embedding of a gauge algebra g̃ in h,

but also to compute the commutant of g̃ in h. In general, upon following a chain of

maximal embeddings, the resulting subalgebra commuting with g̃ need not be maximal.

However, the maximal commuting subalgebra will appear somewhere in the tree of all

possible chains of maximal embeddings which contain g̃ as a factor. To determine whether a

given commuting subalgebra is maximal or is itself a subalgebra of a commuting subalgebra

found in a different chain, one needs to check whether the two different embeddings of g̃

are equivalent or not.

For example, consider the case of entries 22 and 23 in table 3. These are two different

Lagrangian theories whose duals have the same gauge group g̃ = SU(2)1 ⊕ SU(3)2 both

embedded in the flavor algebra h = E6 of SCFT[3 : E6]. (Theory 22 is an “elliptic model”

whose low energy effective action was computed in [15], while theory 23 is a “twisted

elliptic” model whose curve is not known.) In the case of theory 22 the chain of maximal
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h ⊃ g̃I ⊕ fI′

1. E8 ⊃ Sp(2)1 ⊕ SO(11)1
2. E8 ⊃ SU(5)1 ⊕ SU(5)1
3. E8 ⊃ SO(11)1 ⊕ Sp(2)1
4. Sp(5) ⊃ SU(2)1 ⊕ Sp(4)1
5. Sp(5) ⊃ Sp(2)1 ⊕ Sp(3)1
6. Sp(5) ⊃ SU(5)2 ⊕ U(1)

7. E7 ⊃ SU(2)1 ⊕ SO(12)1
8. E7 ⊃ SU(3)1 ⊕ SU(6)1
9. E7 ⊃ (G2)1 ⊕ Sp(3)1

10. E7 ⊃ SO(7)1 ⊕ Sp(2)1 ⊕ SU(2)1
11. E7 ⊃ (G2)1 ⊕ Sp(3)1 for both

12. Sp(3) ⊕ SU(2) ⊃ SU(2)1 ⊕ Sp(3)1
13. Sp(3) ⊕ SU(2) ⊃ SU(2)1 ⊕ Sp(2)1 ⊕ SU(2)1

14. Sp(3) ⊕ SU(2) ⊃ SU(3)2 ⊕ U(1) ⊕ SU(2)1

15. E6 ⊃ SU(2)1 ⊕ SU(6)1
16. E6 ⊃ Sp(2)1 ⊕ Sp(2)1 ⊕ U(1)

17. h ⊃ SU(2)I ⊕ U(1) if n = 2

⊃ SU(2)I ⊕ U(1) ⊕ U(1) if n = 1, 0

18. E6 ⊃ SU(2)1 ⊕ SU(2)1 ⊕ SU(4)1
19. E7 ⊃ SU(2)1 ⊕ SU(2)1 ⊕ SU(2)1 ⊕ SO(8)1
20. Sp(3) ⊃ SU(2)1 ⊕ Sp(2)1
21. Sp(5) ⊃ SU(2)1 ⊕ SU(2)1 ⊕ Sp(3)1
22. E6 ⊃ SU(3)2 ⊕ SU(2)1 ⊕ SU(2)3
23. E6 ⊃ SU(3)2 ⊕ SU(2)1 ⊕ U(1)

24. E6 ⊃ SU(3)1 ⊕ SU(2)1 ⊕ SU(3)1 ⊕ U(1)

25. E6 ⊃ SU(2)1 ⊕ Sp(2)2 ⊕ U(1)

Sp(3) ⊕ SU(2) ⊃ SU(3)2 ⊕ SU(2)1 ⊕ U(1)

26. E6 ⊃ SU(2)1 ⊕ Sp(2)1 ⊕ SU(2)1 ⊕ U(1)

E7 ⊃ SU(3)1 ⊕ SU(2)1 ⊕ SU(4)1 ⊕ U(1)

27. Sp(3) ⊕ SU(2) ⊃ SU(2)1 ⊕ Sp(2)1 ⊕ SU(2)1

E7 ⊃ Sp(2)1 ⊕ SU(2)1 ⊕ SO(7)1
28. E7 ⊃ Sp(2)1 ⊕ SU(2)1 ⊕ SU(2)1 ⊕ SU(2)1 ⊕ SU(2)2
29. E7 ⊃ (G2)1 ⊕ SU(2)1 ⊕ Sp(2)1

Sp(5) ⊃ Sp(2)1 ⊕ SU(2)1 ⊕ Sp(2)1

Table 4: Algebra embeddings. The subscript on each subalgebra is its index of embedding.

embeddings is

E6 ⊃ SU(3)2 ⊕

(
(G2)1 ⊃ SU(2)1 ⊕ SU(2)3

)
, (A.1)
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while for theory 23 it is

E6 ⊃ SU(2)1 ⊕

(
SU(5)1 ⊃ SU(4)2 ⊃ SU(3)2 ⊕ U(1)

)
. (A.2)

To show that these are really different maximal embeddings, we must show that they are

different embeddings of SU(2)1 ⊕SU(3)2 in E6, otherwise (A.2) would just be a subalgebra

of (A.1). To show this, we check the branching of a specific representation. For (A.1),

under E6 ⊃ SU(3) ⊕ G2: 27 = (6,1) ⊕ (3,7), and under G2 ⊃ SU(2)1 ⊕ SU(2)3: 7 =

(2,2) ⊕ (1,3). For (A.2), under E6 ⊃ SU(2)1 ⊕ SU(5)1: 27 = (1,15) ⊕ (2,6), and under

SU(6) ⊃ SU(3) ⊃ SU(2) ⊕ U(1): 15 = 15 = 8 ⊕ 3 ⊕ 3 ⊕ 1 and 6 = 6 = 3 ⊕ 3. Putting

these together, under the (A.1) embedding

E6 ⊃ SU(3)2 ⊕ SU(2)1 : 27 = (6,1) ⊕ 2 · (3,2) ⊕ 3 · (3,1),

while under the (A.2) embedding

E6 ⊃ SU(3)2 ⊕ SU(2)1 : 27 = (8,1) ⊕ (3,1) ⊕ (3,1) ⊕ (1,1) ⊕ (3,2) ⊕ (3,2),

showing that they are inequivalent embeddings.
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